Course Outline

Introduction

  • Machine Learning models vs traditional software

Overview of the DevOps Workflow

Overview of the Machine Learning Workflow

ML as Code Plus Data

Components of an ML System

Case Study: A Sales Forecasting Application

Accessing Data

Validating Data

Data Transformation

From Data Pipeline to ML Pipeline

Building the Data Model

Training the Model

Validating the Model

Reproducing Model Training

Deploying a Model

Serving a Trained Model to Production

Testing an ML System

Continuous Delivery Orchestration

Monitoring the Model

Data Versioning

Adapting, Scaling and Maintaining an MLOps Platform

Troubleshooting

Summary and Conclusion

Requirements

  • An understanding of the software development cycle
  • Experience building or working with Machine Learning models
  • Familiarity with Python programming

Audience

  • ML engineers
  • DevOps engineers
  • Data engineers
  • Infrastructure engineers
  • Software developers
 35 Hours

Delivery Options

Private Group Training

Our identity is rooted in delivering exactly what our clients need.

  • Pre-course call with your trainer
  • Customisation of the learning experience to achieve your goals -
    • Bespoke outlines
    • Practical hands-on exercises containing data / scenarios recognisable to the learners
  • Training scheduled on a date of your choice
  • Delivered online, onsite/classroom or hybrid by experts sharing real world experience

Private Group Prices RRP from €11400 online delivery, based on a group of 2 delegates, €3600 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.

Contact us for an exact quote and to hear our latest promotions


Public Training

Please see our public courses

Testimonials (3)

Provisonal Upcoming Courses (Contact Us For More Information)

Related Categories