Course Outline

Introduction

  • Graph databases and libraries

Understanding Graph Data

  • The graph as a data structure
  • Using vertices (dots) and edges (lines) to model real-world scenarios

Using Graph Databases to Model, Persist and Process Graph Data

  • Local graph algorithms/traversals
  • neo4j, OrientDB and Titan

Exercise: Modeling Graph Data with neo4j

  • Whiteboard data modeling

Beyond Graph Databases: Graph Computing

  • Understanding the property graph
  • Graph modeling different scenarios (software graph, discussion graph, concept graph)

Solving Real-World Problems with Traversals

  • Algorithmic/directed walk over the graph
  • Determining circular cependencies

Case Study: Ranking Discussion Contributors

  • Ranking by number and depth of contributed discussions
  • A note on sentiment and concept analysis

Graph Computing: Local, In-Memory Graph toolkits

  • Graph analysis and visualization
  • JUNG, NetworkX, and iGraph

Exercise: Modeling Graph Data with NetworkX

  • Using NetworkX to model a complex system

Graph Computing: Batch Processing Graph Frameworks

  • Leveraging Hadoop for storage (HDFS) and processing (MapReduce)
  • Overview of iterative algorithms
  • Hama, Giraph, and GraphLab

Graph Computing: Graph-Parallel Computation

  • Unifying ETL, exploratory analysis, and iterative graph computation within a single system
  • GraphX

Setup and Installation

  • Hadoop and Spark

GraphX Operators

  • Property, structural, join, neighborhood aggregation, caching and uncaching

Iterating with Pregel API

  • Passing arguments for sending, receiving and computing

Building a Graph

  • Using vertices and edges in an RDD or on disk

Designing Scalable Algorithms

  • GraphX Optimization

Accessing Additional Algorithms

  • PageRank, Connected Components, Triangle Counting

Exercis: Page Rank and Top Users

  • Building and processing graph data using text files as input

Deploying to Production

Closing Remarks

Requirements

  • An undersanding of Java programming and frameworks
  • A general understanding of Python is helpful but not required
  • A general understanding of database concepts

Audience

  • Developers
 28 Hours

Delivery Options

Private Group Training

Our identity is rooted in delivering exactly what our clients need.

  • Pre-course call with your trainer
  • Customisation of the learning experience to achieve your goals -
    • Bespoke outlines
    • Practical hands-on exercises containing data / scenarios recognisable to the learners
  • Training scheduled on a date of your choice
  • Delivered online, onsite/classroom or hybrid by experts sharing real world experience

Private Group Prices RRP from €9120 online delivery, based on a group of 2 delegates, €2880 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.

Contact us for an exact quote and to hear our latest promotions


Public Training

Please see our public courses

Testimonials (2)

Provisonal Upcoming Courses (Contact Us For More Information)

Related Categories